

Binomials

- **2** Expand $(1 x)^{\frac{1}{2}}$ as a polynomial in x up to and including the term in x^3 .
- **3** Expand $(1 4x)^{-3}$ as a polynomial in x up to and including the term in x^3 .
- 4 Given $(1 2x)^{1/3}$
 - **a** Expand as a polynomial in x up to and including the term in x³.
 - **b** Find the exact value of the expression if x = 1/8
 - **c** Use the expansion to get a values to 4 decimal places for $\sqrt[7]{6}$
- 5 The binomial expansion of $(1 kx)^{-3}$ as a polynomial has coefficient of 27 for the x term.
 - **a** Find the value of *k*
 - **b** Find the coefficient of the x² term.
- 6 Take the expression $(1 5x)^{3/2}$ and,
 - a Expand as a polynomial in x up to and including the term in x³.
 - **b** Find the exact value of the expression if x = 1/100
 - **c** Use the expansion to get a value of $\sqrt{95}$ to 6 decimal places.
 - **d** How could you improve the accuracy of the value gained?
- **7** Given $(1 + 2/x)^{-1/2}$,
 - **a** Expand as a polynomial in x up to and including the term in x³.
 - **b** Find the exact value of the expression if x = 9
 - **c** Use the expansion to get a value of $\sqrt{11}$ to 6 decimal places.
 - **d** How could you improve the accuracy of the value gained?
- 8 Given (16 5x)^{1/4}
 - a Expand up to and including the term in x²
 - **b** Use x = 0.1 to find an estimate for the value of $\sqrt{1.5}$ to 5 decimal places.
- **9** For the following expression

$$\frac{3-2x}{(1-x)(x+2)}$$

Expand using partial fractions and then use the binomial expansion to find the expression as polynomial in x up to and including the x³ term.

1

PHYSICS FACTORY

10 The function f(x) is given by

$$\frac{4x^2 - 5x - 5}{(x - 5)(x + 4)}$$

a Show that the function can expanded in the form

$$A + \frac{B}{(x-5)} + \frac{C}{(x+4)}$$

and find the values for A, B and C.

- ${\bf b}$ Hence, expand as a binomial series up to the term in ${\bf x}^2$.
- **c** Show that the expansion is better than 99% accurate using x = 1 as a test value.
- **d** How could you make the value of given by the expansion more accurate?

